1 research outputs found

    Application of artificial intelligence techniques for predicting the flyrock, Sungun mine, Iran

    Get PDF
    Flyrock is known as one of the main problems in open pit mining operations. This phenomenon can threaten the safety of mine personnel, equipment and buildings around the mine area. One way to reduce the risk of accidents due to flyrock is to accurately predict that the safe area can be identified and also with proper design of the explosion pattern, the amount of flyrock can be greatly reduced. For this purpose, 14 effective parameters on flyrock have been selected in this paper i.e. burden, blasthole diameter, sub-drilling, number of blastholes, spacing, total length, amount of explosives and a number of other effective parameters, predicting the amount of flyrock in a case study, Songun mine, using linear multivariate regression (LMR) and artificial intelligence algorithms such as Gray Wolf Optimization algorithm (GWO), Moth-Flame Optimization algorithm (MFO), Whale Optimization Algorithm (WOA), Ant Lion Optimizer (ALO) and Multi-Verse Optimizer (MVO). Results showed that intelligent algorithms have better capabilities than linear regression method and finally method MVO showed the best performance for predicting flyrock. Moreover, the results of the sensitivity analysis show that the burden, ANFO, total rock blasted, total length and blast hole diameter are the most significant factors to determine flyrock, respectively, while dynamite has the lowest impact on flyrock generation.Peer ReviewedObjectius de Desenvolupament Sostenible::9 - Indústria, Innovació i InfraestructuraPostprint (published version
    corecore